

	Project: Design By: Date: 22/1/2026
--	---

Horizontal Alignment

Road string road1

Chainage (0 - 793.906)

Curve Type	Circular
Curve	IP1
N	209.586
E	247.094
Central Angle of Circular Curve	0°20'34"
Radius (R _c)	30 m
Design Speed	30 kph
Super Elevation (SE)	0.06 %

Reference	Calculation	Output
	<p>Total tangent distance (IP to TS or ST), Ts $= (R_c + P) \tan (\Delta / 2) + K$ $= (\text{Radius of circular curve} + \text{Offset from intial tangent to PC of shifted circle}) \tan (\Delta / 2) + \text{Tangent distance from TS to PC of shifted circle}$ $= (30 + 0.000) \tan ((4.789-5.132)/2) + 0.000$ $= 5.197 \text{ m}$</p> <p>External distance, Es $= R_c \times ((\sec (\Delta / 2)) - 1)$ $= \text{Radius of circular curve} \times ((\sec (\Delta / 2)) - 1)$ $= 30 \times ((\sec ((4.789-5.132)/2)) - 1)$ $= 0.447 \text{ m}$</p> <p>Degree of Curvature, Dc $= 100 / R_c$ $= 100 / \text{Radius of circular curve}$ $= 100 / 30$ $= 190^\circ 59' 9''$</p> <p>Length of Circular curve, Lc $= R_c \times \Delta \text{ where } \Delta_c \text{ is in radians}$ $= 30 \times 0.343$ $= 10.293 \text{ m}$</p>	5.197m 0.447m 190°59' 9" 10.293 m

Curve Type	Spiral
Curve	IP2
N	222.210
E	83.034
Central Angle of Circular Curve	0°56'32"
Radius (R_c)	30 m
Design Speed	30 kph
Super Elevation (SE)	0.06 %

Reference	Calculation	Output
	Total tangent distance (IP to TS or ST), T_s $= (R_c + P) \tan(\frac{\Delta}{2}) + K$ $= (\text{Radius of circular curve} + \text{Offset from intial tangent to PC of shifted circle}) \tan(\frac{\Delta}{2}) + \text{Tangent distance from TS to PC of shifted circle}$ $= (30 + 1.239) \tan((0.449-4.789)/2) + 14.876$ $= 60.583 \text{ m}$	60.583 m
	External distance, E_s $= (R_c + P) \sec(\frac{\Delta}{2}) - R_c$ $= (\text{Radius of circular curve} + \text{Offset from intial tangent to PC of shifted circle}) \sec(\frac{\Delta}{2}) - \text{Radius of circular curve}$ $= (30 + 1.239) \sec((0.449-4.789)/2) - 30$ $= 25.362 \text{ m}$	25.362 m
	Degree of Curvature, D_c $= 100 / R_c$ $= 100 / \text{Radius of circular curve}$ $= 100 / 30$ $= 190°59'9''$	190°59' 9''
	Length of Circular curve, L_c $= R_c \times \Delta$ where Δ is in radians $= 30 \times 0.943$ $= 28.275 \text{ m}$	28.275 m
	Spiral length from TS to SC or ST to CS, L_s For spiral curve, Spiral Length is equivalent to Runoff length Spiral Run off calculation type = Fixed Mode with Adjustment Factor $= 30.000$ Central angle of Spiral arc L_s (Spiral angle), θ_s $= L_s \times D_c / 200$ (in degrees) $= \text{Spiral length from TS to SC or ST to CS} \times \text{Degree of circular curve} / 200$ $= 30.000 \times 3.333 / 200$ $= 28°38'51''$	30.000 m
	Deflection angle at TS from initial tangent to SC, θ_c $= \tan^{-1}(Y_s / X_s)$ $= \tan^{-1}(\text{Tangent offset from initial tangent of any point on Spiral} / \text{Tangent distance along initial tangent of any point on Spiral with reference to TS or ST})$ $= \tan^{-1}(4.911 / 29.259)$ $= 9°31'43''$	9°31'43''
	Tangent distance along initial tangent of any point on Spiral with reference to TS or ST, X_s $= L (1 - \theta^2/10 + \theta^4/216 - \theta^6/9360 + \theta^8/685440)$ where θ is in radians $= 29.259 \text{ m}$	29.259 m
	Tangent offset from initial tangent of any point on Spiral, Y_s $= L (\theta/3 - \theta^3/42 + \theta^5/1320 - \theta^7/75600 + \theta^9/6894720)$ where θ is in radians $= 4.911 \text{ m}$	4.911m
	Long Chord (TS to SC or CS to ST), L_c $= \sqrt{(X_s^2 + Y_s^2)}$	29.668 m

$$= \sqrt{(29.259^2 + 4.911^2)}$$

$$= 29.668 \text{ m}$$

Long Tangent of Spiral, LT

$$= X_S - Y_S \operatorname{Cot} \theta_S$$

$$= 29.259 - 4.911 \operatorname{Cot} 0.500$$

$$= 20.268 \text{ m}$$

20.268

m

Short Tangent of Spiral, ST

$$= Y_S / \operatorname{Sin} \theta_S$$

10.244

$$= 4.911 / \operatorname{Sin} 0.500$$

m

$$= 10.244 \text{ m}$$

10.244

m

Offset from initial tangent to PC of shifted circle, P

$$= Y_S - R_C(1 - \operatorname{Cos} \theta_S)$$

1.239m

$$= 4.911 - 30(1 - \operatorname{Cos} 0.500)$$

$$= 1.239 \text{ m}$$

Tangent distance from TS to PC of shifted circle, k

$$= X_S - R_C \operatorname{Sin} \theta_S$$

14.876

$$= 29.259 - 30(\operatorname{Sin} 0.500)$$

m

$$= 14.876 \text{ m}$$

14.876

m

Vertical Alignment

Road string road1

Chainage (299.219 - 608.556)

VIP. No.	VIP1
VIP. CH.	300
VIP. Elevation	32.28
Grade In	1.547 %
Grade Out	1.235 %
Design Speed	30 kph

Reference	Calculation	Output
	Delta Grade, ΔG (%) $= \text{Outgoing Grade} - \text{Incoming Grade} $ $= 1.235 - 1.547$ $= -0.312$	-0.312
	Vertical Curve Length (m) $= K \text{ value} \times \Delta G$ $= K \text{ value} \times \text{Grade Difference}$ $= 5.000 \times 1.235 - 1.547 $ $= 1.562$	1.562m
	Required Length (m) $= \text{Min. } K \times \Delta G$ $= \text{Minimum } K \times \text{Grade Difference}$ $= 5 \times 1.235 - 1.547 $ $= 1.562$	1.562m
	Middle Ordinate, Mo $= (\Delta G \times VCL) / 800$ $= (\text{Grade Difference} \times \text{Vertical Curve Length}) / 800$ $= 1.235 - 1.547 \times 1.562 / 800$ $= 0.001$	0.001
	K $= VCL / \Delta G$ $= \text{Vertical Curve Length} / \text{Grade Difference}$ $= 1.562 / 1.235 - 1.547 $ $= 5.000$	5.000

VIP. No.	VIP2
VIP. CH.	600
VIP. Elevation	35.91
Grade In	1.235 %
Grade Out	-2.187 %
Design Speed	30 kph

Reference	Calculation	Output
	Delta Grade, ΔG (%) = Outgoing Grade - Incoming Grade = -2.187 - 1.235 = -3.423	-3.423
	Vertical Curve Length (m) = K value x ΔG = K value x Grade Difference = 5.000 x -2.187 - 1.235 = 17.113	17.113 m
	Required Length (m) = Min. K x ΔG = Minimum K x Grade Difference = 5 x -2.187 - 1.235 = 17.113	17.113 m
	Middle Ordinate, Mo = $(\Delta G \times VCL) / 800$ = (Grade Difference x Vertical Curve Length) / 800 = -2.187 - 1.235 x 17.113 / 800 = 0.073	0.073
	K = VCL / ΔG = Vertical Curve Length / Grade Difference = 17.113 / -2.187 - 1.235 = 5.000	5.000